Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202401208, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597254

RESUMO

Manipulation of periodic micro/nanostructures in polymer film is of great importance for academics and industrial applications in anticounterfeiting. However, with the increasing demand on information security, materials with time-dependent features are urgently required, especially the material where the same information can appear more than once on the time scale. Here, one concise strategy to realize time-dependent anticounterfeiting and "double-lock" information encryption based on a host-guest system is proposed, with one photoresponsive azopolymer as the host and one liquid-crystalline molecule as the guest. The system exhibits a tunable mass transport in pre-designed periodic micro/nanostructures by tailoring the process of cis-to-trans recovery of azo groups and assembly of mesogenic trans-isomers, resulting in a dynamic structural color in film. Taking advantage of this extraordinary feature, time-dependent dynamic anticounterfeiting has been achieved. More importantly, the time of each state's appearance in the whole process can be modulated by changing the host-guest ratio. Combining the manipulatable process of mass transport with the unique decoding method, the stored information in film can be decrypted correctly. This work provides an unprecedented dynamic approach for advanced anticounterfeiting technology with a higher level of security and high-end applications in information encryption.

2.
Membranes (Basel) ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392659

RESUMO

Graphene oxide (GO) with its atomic thickness and abundant functional groups holds great potential in molecular-scale membrane separation. However, constructing high-speed and highly selective water transport channels within GO membranes remains a key challenge. Herein, sulfonato calix[n]arenes (SCn) molecules with a cavity structure, hydrophilic entrance, and hydrophobic wall were incorporated into GO interlayer channels through a layer-by-layer assembly approach to facilitate water permeation in a water/ethanol separation process. The hydrophilic entrance enables preferential access of water molecules to the cavity over ethanol molecules, while the high hydrophobicity of the cavity wall confers low resistance for water diffusion. After incorporating SCn molecules, the membrane shows a remarkable increase in the water/ethanol separation factor from 732 to 1260, while the permeate flux also increases by about 50%. In addition, the strong electrostatic interactions between the building blocks endow the membrane with excellent swelling resistance even under a high water content. This work provides an effective strategy of constructing high-efficiency water transport channels in membrane.

3.
iScience ; 27(2): 108790, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38292421

RESUMO

Numerous anticounterfeiting platforms using photoresponsive materials have been designed to improve information security, enabling applications in anticounterfeiting technology. However, fabricating sophisticated micro/nanostructures using bidirectional mass transport to achieve advanced anticounterfeiting remains challenging. Here, we propose one strategy to achieve steerable mass transport in a photoresponsive system with the assistance of solvent vapor at room temperature. Upon optimizing the host-guest ratio and the width of photoisomerized areas, wettability gradient is acquired just photo-patterning once, then bidirectional mass transport is realized due to the competition of mass transport induced by surface energy gradient of the material itself and flow of the solvent on the film surface with wettability gradient. Taking advantage of the interaction between solvent and film surface with wettability gradient, this bidirectional polymer flow has been successfully applied in multi-mode anticounterfeiting. This work paves a promising avenue toward high-level information storage in soft materials, demonstrating the potential applications in anticounterfeiting.

4.
Langmuir ; 39(49): 18101-18112, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38038444

RESUMO

CD47 on the surface of tumor cells has become a research hot spot in immunotherapy and anticancer therapy, as it can bind to SIRPα protein on the surface of macrophages, which ultimately leads to immune escape of tumor cells. In the present study, molecular interactions between CD47 and human SIRPα proteins (including variant 1, V1 and variant 2, V2) were analyzed through molecular dynamics (MD) simulation and the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method. Hydrophobic interactions were found as the main driving force for the binding of CD47 on SIRPα. The residues including pyroglutamate acid (Z)1, L2, E35, Y37, E97, L101, and T102 of CD47 were identified with a significant favorable contribution to the binding of CD47 on SIRPα (both V1 and V2). Based on this, a peptide inhibitor library with the sequence ZLXRTLXEXY was designed (X represents the arbitrary residue of 20 standard amino acids) and then screened using molecular docking, MD simulations, and experimental validation. Finally, a peptide ZLIRTLHEWY was determined with high affinity with SIRPα from 8000 candidates, containing 6/10 residues favorable for the binding on SIRPα V1 and 8/10 residues favorable for the binding on SIRPα V2, which was thus considered to have potential anticancer function.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Antígeno CD47/genética , Antígeno CD47/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Simulação de Acoplamento Molecular , Biomimética , Antígenos de Diferenciação/química , Antígenos de Diferenciação/metabolismo , Peptídeos/farmacologia , Biblioteca de Peptídeos , Fagocitose
5.
ACS Appl Mater Interfaces ; 15(19): 23804-23812, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37145983

RESUMO

Surface morphing of organic materials is necessary for advances in semiconductor processing, optical gratings, anticounterfeiting etc., but it is still challenging, especially for its fundamental explanation and further applications like advanced anticounterfeiting. Here, we report one strategy to acquire surface deformation of the liquid-crystalline azopolymer film using a two-step method: selective photoisomerization of azopolymers and then solvent development. In the first step, surface tension of the polymer film can be patterned by the selective photoisomerization of azopolymers, and then in the second step, the flowing solvent drags the underlying polymer to transport, leading to the formation of surface deformation. Interestingly, the direction of mass transport is opposite to the traditional Marangoni flow, and the principle of solvents' choice is the matching of surface tensions between the azopolymer and the solvent. The two-step method shows characteristics of efficient surface morphing, which could be applied in advanced anticounterfeiting by the way of photomask-assistant information writing or microscale direct writing, and then reading in a specific liquid environment. This paves a new way for understanding the mechanism of mass transport toward numerous unprecedented applications using various photoresponsive materials.

6.
Membranes (Basel) ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363616

RESUMO

Metal-organic frameworks (MOFs) are regarded as the next-generation, disruptive membrane materials, yet the straightforward fabrication of ultrathin MOF membranes on an unmodified porous support remains a critical challenge. In this work, we proposed a facile, one-step electrophoretic deposition (EPD) method for the growth of ultrathin zeolitic imidazole framework-8 (ZIF-8) membranes on a bare porous support. The crystallinity, morphology and coverage of ZIF-8 particles on support surface can be optimized via regulating EPD parameters, yet it is still difficult to ensure the integrity of a ZIF-8 membrane with the constant voltage mode. In contrast, the constant current mode is more beneficial to the growth of a defect-free ZIF-8 membrane due to the steady migration rate of colloid particles toward the electrode. With a current of 0.65 mA/cm2 and deposition time of 60 min, a 300 nm thick ZIF-8 membrane was obtained, which exhibits a CO2 permeance of 334 GPU and a CO2/CH4 separation factor of 8.8, evidencing the defect-free structure.

7.
Langmuir ; 38(23): 7114-7120, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35623058

RESUMO

The development of antithrombotic peptides targeting collagen was proven effective, and an effective antithrombotic peptide LEKNSTY was obtained in part I. However, the plasma stability of LEKNSTY was found to be not good enough. In this part, the LEKNSTY was further optimized for improvement in plasma stability by substitution using d-amino acid residues. Two novel antithrombotic peptides LekNStY and lEKnsTy were designed, where lowercase letters represent d-amino acid residues. Improvements in plasma stability of both LekNStY and lEKnsTy were experimentally confirmed. Moreover, good binding of these antithrombotic peptides on the collagen surface was confirmed by molecular dynamics simulation and experimental validation. For example, a Kd of only 0.75 ± 0.10 µM was observed for lEKnsTy. Moreover, LekNStY and lEKnsTy were found to inhibit platelet adhesion on the collagen surface more effectively than LEKNSTY, and the IC50 of lEKnsTy was only 2/5 of that of LEKNSTY. These results confirmed the successful design of LekNStY and lEKnsTy that had good plasma stability and could effectively inhibit arterial thrombosis, which would be helpful for the research into interfaces involved in thrombus formation and the development of antithrombotic nanomedicine.


Assuntos
Fibrinolíticos , Trombose , Aminoácidos , Colágeno/metabolismo , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Humanos , Peptídeos/farmacologia , Adesividade Plaquetária , Trombose/tratamento farmacológico , Trombose/prevenção & controle
8.
ACS Nano ; 15(3): 5209-5220, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33621056

RESUMO

Ion transport is crucial for biological systems and membrane-based technologies from both fundamental and practical aspects. Unlike biological ion channels, realizing efficient ion sieving by using membranes with artificial ion channels remains an extremely challenging task. Inspired by biological ion channels with proper steric containment of target ions within affinitive binding sites along the selective filter, herein we design a system of biomimic two-dimensional (2D) ionic transport channels based on a graphene oxide (GO) membrane, where the ionic imidazole group tunes the appropriate physical confinement of 2D ionic transport channels to mimic the confined cavity structures of the biological selectivity filter, and the ionic sulfonic group creates a favorable chemical environment of 2D ionic transport channels to mimic the affinitive binding sites of the biological selectivity filter. As a result, the as-fabricated ionic GO membrane demonstrates an exceptional K+ transport rate of ∼1.36 mol m-2 h-1 and competitive K+/Mg2+ selectivity of ∼9.11, outperforming state-of-the-art counterparts. Moreover, the semiquantitative studies of ion transport through 2D ionic transport channels suggest that efficient ion sieving with the ionic GO membrane is achieved by the high diffusion and partition coefficients of hydrated monovalent ions, as well as the large energy barrier and limited potential gradient of hydrated divalent ions encountered.

9.
ACS Appl Mater Interfaces ; 11(40): 36717-36726, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31509377

RESUMO

Ultrathin-film composite membranes comprising an ultrathin polymeric active layer have been extensively explored in gas separation applications benefiting from their extraordinary permeation flux for high-throughput separation. However, the practical realization of an ultrathin active layer in liquid separations is still impeded by the trade-off effect between the membrane thickness (permeation flux) and structural stability (separation factor). Herein, we report a general multiple and alternate spin-coating strategy, collaborating with the interface-decoration layer of copper hydroxide nanofibers (CHNs), to obtain ultrathin and robust polymer-based membranes for high-performance liquid separations. The structural stability arises from the poly(dimethylsiloxane) (PDMS)/CHN interpenetrated structure, which confers the synergistic effect between PDMS and CHNs to concurrently resist PDMS swelling and avoid CHNs from collapsing, while the ultrathin thickness is enabled by the sub-10 nm pore size of the CHN layer, the rapid cross-linking reaction during spin-coating, and the small thickness of the CHN layer. As a result, the as-prepared membrane possesses an exceptional butanol/water separation performance with a flux of 6.18 kg/(m2 h) and a separation factor of 31, far exceeding the state-of-the-art polymer membranes. The strategy delineated in this work provides a straightforward method for the design of ultrathin and structurally stable polymer membranes, holding great potential for the practical application of high-efficiency separations.

10.
Nat Commun ; 10(1): 1253, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890713

RESUMO

Ion transport is crucial for biological systems and membrane-based technology. Atomic-thick two-dimensional materials, especially graphene oxide (GO), have emerged as ideal building blocks for developing synthetic membranes for ion transport. However, the exclusion of small ions in a pressured filtration process remains a challenge for GO membranes. Here we report manipulation of membrane surface charge to control ion transport through GO membranes. The highly charged GO membrane surface repels high-valent co-ions owing to its high interaction energy barrier while concomitantly restraining permeation of electrostatically attracted low-valent counter-ions based on balancing overall solution charge. The deliberately regulated surface-charged GO membranes demonstrate remarkable enhancement of ion rejection with intrinsically high water permeance that exceeds the performance limits of state-of-the-art nanofiltration membranes. This facile and scalable surface charge control approach opens opportunities in selective ion transport for the fields of water transport, biomimetic ion channels and biosensors, ion batteries and energy conversions.

11.
ChemSusChem ; 11(14): 2315-2320, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29733542

RESUMO

Lignin-based cations introduced into graphene oxide (GO) have been found to bring about stabilization of the nanostructure and the active sites and to give rise to various interactions for subsequent modification with polyelectrolyte and nanospacers, with a view to precisely controlling the nanochannels of the GO-based membranes. The resulting membranes exhibited excellent performance in biofuel dehydration with water flux of 4000-6000 g m-2 h-1 , which exceeds that of the state-of-the-art polymeric and GO-based membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA